Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 44(2012) pp. 23-29

Jordan Left Derivations on Lie Ideals of Prime Γ -rings

A. K. Halder University of Rajshahi Department of Mathematics Rajshahi-6205 Rajshahi, Bangladesh Email: halderamitabh@yahoo.com

A. C. Paul University of Rajshahi Department of Mathematics Rajshahi-6205 Rajshahi, Bangladesh Email: acpaulru_math@yahoo.com

Abstract.Let M be a 2-torsion free prime Γ -ring. Let U be a Lie ideal of M such that $u\alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$. If $d : M \to M$ is an additive mapping such that $d(u\alpha u) = 2u\alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then $d(u\alpha v) = u\alpha d(v) + v\alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$.

AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15

Key Words: *n*-torsion free, Lie ideals, Jordan left derivations, Prime Γ -rings.

1. INTRODUCTION

Let M and Γ be additive abelian groups. M is said to be a Γ -ring if there exists a mapping $M \times \Gamma \times M \to M$ (sending (x, α, y) into $x\alpha y$) such that

(a) $(x+y)\alpha z = x\alpha z + y\alpha z$,

 $x(\alpha + \beta)y = x\alpha y + x\beta y,$

 $x\alpha(y+z) = x\alpha y + x\alpha z,$

(b) $(x\alpha y)\beta z = x\alpha(y\beta z),$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

A subset A of a Γ -ring M is a left(right) ideal of M if A is an additive subgroup of M and $M\Gamma A = \{m\alpha a : m \in M, \alpha \in \Gamma, a \in A\}, A\Gamma M$ is contained in A. The centre of M is doneted by Z(M) which is define by $Z(M) = \{m \in M : a\alpha m = m\alpha a, a \in M, \alpha \in \Gamma\}$. M is commutative if $a\alpha b = b\alpha a$, for all $a, b \in M$ and $\alpha \in \Gamma$. M is prime if $a\Gamma M\Gamma b = 0$ with $a, b \in M$, then a = 0 or b = 0. We denote the commutator $x\alpha y - y\alpha x$ by $[x, y]_{\alpha}$. An additive subgroup U of M is said to be a Lie ideal of M if $[u, x]_{\alpha} \in U$, for all $u \in U, x \in M$ and $\alpha \in \Gamma$. M is n-torsion free if nx = 0, for $x \in M$ implies x = 0, where n is an integer. An additive mapping $d : M \to M$ is a derivation if $d(a\alpha b) =$ $a\alpha d(b) + d(a)\alpha b$, a left derivation if $d(a\alpha b) = a\alpha d(b) + b\alpha d(a)$, a Jordan derivation if $d(a\alpha a) = a\alpha d(a) + d(a)\alpha a$ and a Jordan left derivation if $d(a\alpha a) = 2a\alpha d(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$. Y.Ceven [3] worked on Jordan left derivations on completely prime Γ -rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ -ring that makes the Γ -ring commutative with an assumption. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ -ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation for Γ -rings.

Mustafa Asci and Sahin Ceran [6] studied on a nonzero left derivation d on a prime Γ -ring M for which M is commutative with the conditions $d(U) \subseteq U$ and $d^2(U) \subseteq Z$, where U is an ideal of M and Z is the centre of M. They also proved the commutativity of M by the nonzero left derivation d_1 and right derivation d_2 on M with the conditions $d_2(U) \subseteq U$ and $d_1d_2(U) \subseteq Z$.

In [7], M.Sapanci and A.Nakajima defined a derivation and a Jordan derivation on Γ -rings and investigated a Jordan derivation on a certain type of completely prime Γ -ring which is a derivation. They also gave examples of a derivation and a Jordan derivation of Γ -rings.

M. Bresar and J.Vukman[2] showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative, where R is a ring and X is 2-torsion free and 3-torsion free left R-module.In [8], Jun and Kim proved their results without the property 3-torsion free.

Qing Deng [4] worked on Jordan left derivations d of prime ring R of characteristic not 2 into a nonzero faithful and prime left R-module X. He proved the commutativity of R with Jordan left derivation d.

Mohammad Ashraf and Nadeem-Ur-Rehman[1] studied on Lie ideals and Jordan left derivations of prime rings. They proved that if d is an additive mapping on a 2-torsion free prime ring R satisfying $d(u^2) = 2ud(u)$, for all $u \in U$, where U is a Lie ideal of R such that $u^2 \in U$, for all $u \in U$, then d(uv) = ud(v) + vd(u), for all $u \in U$.

In our paper, we reviewed the results of Mohammad Ashraf and Nadeem-Ur-Rehman[1] in gamma rings. We show that if d is an additive mapping on a 2-torsion free prime Γ -ring M such that $d(u\alpha u) = 2u\alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, where U is a Lie ideal of M such that $u\alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$, then $d(u\alpha v) = u\alpha d(v) + v\alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$. To complete the proof of main result in commutative sense, we take a help from the book 'Topics in ring theory' of Herstein[5]. Finally, we showed that every Jordan left derivation on U is a left derivation.

Throughout this paper, we shall use the mark (*) for $a\alpha b\beta c = a\beta b\alpha c$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

In order to prove our main result, we shall state and prove some lemmas as primary results.

2. PRIMARY RESULTS

Lemma 1. Let $U \not\subseteq Z(M)$ be a Lie ideal of a 2-torsion free σ -prime Γ -ring M. Then there exists an ideal I of M such that $[I, M]_{\alpha} \subseteq U$ but $[I, M]_{\alpha} \not\subseteq Z(M)$.

Proof. Since M is 2-torsion free and $U \not\subseteq Z(M)$, it follows from the results in [6] that $[U, U]_{\alpha} \neq 0$ and $[I, M]_{\alpha} \subseteq U$, where $I = I\alpha[U, U]_{\alpha}\alpha M \neq 0$ is an ideal of M generated by $[U, U]_{\alpha}$. Now, $U \not\subseteq Z(M)$ implies $[I, M]_{\alpha} \not\subseteq Z(M)$; for, if $[I, M]_{\alpha} \subseteq Z(M)$ then $[I, [I, M]_{\alpha}]_{\alpha} = 0$, which gives $I \subseteq Z(M)$ and, since $I \neq 0$ is an ideal of M, so M = Z(M).

24

Lemma 2. Let $U \not\subseteq Z(M)$ be a Lie ideal of a 2-torsion free prime Γ -ring M which satisfies the condition (*) and $a, b \in M$ such that $a\alpha U\beta b = 0$. Then a = 0 or b = 0.

Proof. Since M is 2-torsion free prime Γ -ring, there exists an ideal I of M such that $[I, M]_{\alpha} \subseteq U$ but $[I, M]_{\alpha} \not\subseteq Z(M)$, by Lemma 1. Now, taking $u \in U$, $e \in I$ and $m \in M$, we have $[e\alpha a\alpha u, m]_{\alpha} \in [I, M]_{\alpha} \subseteq U$, and so $0 = a\alpha [e\alpha a\alpha u, m]_{\beta}\beta b$ $= a\alpha [e\alpha a, m]_{\alpha}\beta u\beta b + a\alpha e\beta a\alpha [u, m]_{\alpha}\beta b$, by (*) $= a\alpha [e\alpha a, m]_{\alpha}\beta u\beta b$, since $a\alpha [u, m]_{\alpha} \in a\alpha U\beta b$ $= a\alpha e\alpha a\alpha m\beta u\beta b - a\alpha m\alpha e\alpha a\beta u\beta b$ $= a\alpha e\alpha a\alpha m\beta u\beta b - a\alpha m\alpha e\beta a\alpha u\beta b$, by (*) $= a\alpha e\alpha a\alpha m\beta u\beta b$, by assumption. Thus $a\alpha I\alpha a\alpha M\beta U\beta b = 0$. If $a \neq 0$ then $U\beta b = 0$, by the primeness of M. Now, if $u \in U$ and $m \in M$ then $u\alpha m - m\alpha u \in U$ and hence $(u\alpha m - m\alpha u)\beta b = 0$ implies $u\alpha m\beta b = 0$, that is $u\alpha M\beta b = 0$. Since $U \neq 0$, we must have b = 0. In the similar fashion, it can be shown that if $b \neq 0$

then a = 0.

Lemma 3. Let M be a 2-torsion free prime Γ -ring and let U be a Lie ideal of M such that $u\alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$. If $d : M \to M$ is an additive mapping satisfying $d(u\alpha u) = 2u\alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then (a) $d(u\alpha v + v\alpha u) = 2u\alpha d(v) + 2v\alpha d(u)$. Let M satisfy (*), then (b) $d(u\alpha v\beta u) = u\alpha u\beta d(v) + 3u\alpha v\beta d(u) - v\alpha u\beta d(u)$, (c) $d(u\alpha v\beta w + w\alpha v\beta u) = (u\alpha w + w\alpha u)\beta d(v) + 3u\alpha v\beta d(w) + 3w\alpha v\beta d(u) - v\alpha u\beta d(w) - v\alpha u\beta d(u)$, (d) $[u, v]_{\alpha} \alpha u\beta d(u) = u\alpha [u, v]_{\alpha} \beta d(u)$ (e) $[u, v]_{\alpha} \beta (d(u\alpha v) - u\alpha d(v) - v\alpha d(u)) = 0$, for all $u, v, w \in U$ and $\alpha, \beta \in \Gamma$.

Proof. Since $u\alpha v + v\alpha u = (u+v)\alpha(u+v) - u\alpha u - v\alpha v$, we have $u\alpha v + v\alpha u \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$. Then $d(u\alpha v + v\alpha u) = d((u+v)\alpha(u+v)) - d(u\alpha u) - d(v\alpha v)$ with our hypothesis yields the required result. Replacing v by $u\beta v + v\beta u$ in (a), we have

$$d(u\alpha(u\beta v + v\beta u) + (u\beta v + v\beta u)\alpha u) =$$

$$2u\alpha d(u\beta v + v\beta u) + 2(u\beta v + v\beta u)\alpha d(u).$$
(2.1)

Since $u\alpha v + v\alpha u \in U$, by (*) we get

$$d(u\alpha(u\beta v + v\beta u) + (u\beta v + v\beta u)\alpha u) =$$

$$4u\alpha u\beta d(v) + 6u\alpha v\beta d(u) + 2v\alpha u\beta d(u).$$
(2.2)

On the other hand

$$d(u\alpha(u\beta v + v\beta u) + (u\beta v + v\beta u)\alpha u) =$$

$$d(u\alpha u\beta v + v\beta u\alpha u) + 2d(u\alpha v\beta u) =$$

$$2u\alpha u\beta d(v) + 4v\alpha u\beta d(u) + 2d(u\alpha v\beta u).$$
(2.3)

Combining (2.2) and (2.3) and using the condition that M is 2-torsion free, we obtain (b).

Replacing u + w for u in (b) and using (*), we get

$$d((u+w)\alpha v\beta(u+w)) =$$

$$u\alpha u\beta d(v) + w\alpha w\beta d(v) + (u\alpha w + w\alpha u)\beta d(v) +$$

$$3u\alpha v\beta d(u) + 3u\alpha v\beta d(w) + 3w\alpha v\beta d(u) + w\alpha v\beta d(w) -$$

$$v\alpha u\beta d(u) - v\alpha u\beta d(w) - v\alpha w\beta d(u) - v\alpha w\beta d(w).$$
(2.4)

On the other hand with (*), we have

$$d((u+w)\alpha v\beta(u+w)) =$$

$$d(u\alpha v\beta u) + d(w\alpha v\beta w) + d(u\alpha v\beta w + w\alpha v\beta u) =$$

$$u\alpha u\beta d(v) + 3u\alpha v\beta d(u) - v\alpha u\beta d(u) + w\alpha w\beta d(v)$$

$$+3w\alpha v\beta d(w) - v\alpha w\beta d(w) + d(u\alpha v\beta w + w\alpha v\beta u).$$
(2.5)

Combining (2.4) and (2.5), we obtain (c).

Since $u\alpha v + v\alpha u$ and $u\alpha v - v\alpha u$ are in U, we see that $2u\alpha v \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$. By hypothesis, we have $d((u\alpha v)\beta(u\alpha v)) = 2u\alpha v\beta d(u\alpha v)$. Replacing w by $2u\beta v$ in (c) with (*) and the condition that M is 2-torsion free, we get

$$d(u\alpha v\beta(u\beta v) + (u\beta v)\alpha v\beta u) =$$

$$(u\alpha u\beta v + u\alpha v\beta u)\beta d(v) + 3u\alpha v\beta d(u\beta v) +$$

$$3u\alpha v\beta v\beta d(u) - v\alpha u\beta d(u\beta v) - v\alpha u\beta v\beta d(u).$$
(2.6)

On the other hand with (*), we have

$$d(u\alpha v\beta(u\beta v) + (u\beta v)\alpha v\beta u) =$$

$$d((u\beta v)\alpha(u\beta v) + u\alpha v\beta v\beta u) =$$

$$2u\alpha v\beta d(u\beta v) + 2u\alpha u\beta v\beta d(v) +$$

$$3u\alpha v\beta v\beta d(u) - v\alpha v\beta u\beta d(u).$$
(2.7)

Combining (2.6) and (2.7), we have

$$[u, v]_{\alpha}\beta d(u\beta v) =$$

$$u\alpha[u, v]_{\beta}\beta d(v) + v\alpha[u, v]_{\beta}\beta d(u).$$
(2.8)

Replacing u + v for v in (2.8), we have

$$2[u,v]_{\alpha}\beta u\beta d(u) + [u,v]_{\alpha}\beta d(u\beta v) =$$

$$2u\alpha[u,v]_{\beta}\beta d(u) + u\alpha[u,v]_{\beta}\beta d(v) + v\alpha[u,v]_{\beta}\beta d(u).$$
(2.9)

From (2.8) and (2.9), we get (d). Linearizing (d) on u, we have

26

$$[u, v]_{\alpha}\beta u\beta d(u) + [u, v]_{\alpha}\beta v\beta d(v) + [u, v]_{\alpha}\beta u\beta d(v) + [u, v]_{\alpha}\beta v\beta d(u) = (2.10)$$

$$\alpha [u, v]_{\beta}\beta d(u) + u\alpha [u, v]_{\beta}\beta d(v) + v\alpha [u, v]_{\beta}\beta d(u) + v\alpha [u, v]_{\beta}\beta d(v),$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.

Application of (d) and (8) gives $[u, v]_{\alpha}\beta u\beta d(v) + [u, v]_{\alpha}\beta v\beta d(u) = [u, v]_{\alpha}\beta d(u\beta v)$ and hence $[u, v]_{\alpha}\beta (d(u\alpha v) - u\alpha d(v) - v\alpha d(u)) = 0$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$. \Box

Lemma 4. Let M be a 2-torsion free Γ -ring satisfying (*) and U a Lie ideal of M such that $u\alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$. If $d : M \to M$ is an additive mapping satisfying $d(u\alpha u) = 2u\alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then (a) $[u, v]_{\alpha}\beta d([u, v]_{\alpha}) = 0$, (b) $(u\alpha u\alpha v - 2u\alpha v\alpha u + v\alpha u\alpha u)\beta d(v) = 0$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.

Proof. By Lemma 3(a) and Lemma 3(e), we get

$$d(u\alpha v + v\alpha u) = 2(u\alpha d(v) + v\alpha d(u))$$
(2.11)

and

$$[u, v]_{\alpha}\beta(d(u\alpha v) - u\alpha d(v) - v\alpha d(u)) = 0.$$
(2.12)

Combining (2.11) and (2.12), we have

$$[u, v]_{\alpha}\beta(d(v\alpha u) - u\alpha d(v) - v\alpha d(u)) = 0.$$
(2.13)

Using (2.12) - (2.13), we get $[u, v]_{\alpha}\beta d([u, v]_{\alpha}) = 0$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$. For any $u, v \in U$ and $\alpha, \beta \in \Gamma$, we have $d([u, v]_{\alpha}\beta[u, v]_{\alpha}) = 2[u, v]_{\alpha}\beta d([u, v]_{\alpha})$. By (a), we have

$$d([u,v]_{\alpha}\beta[u,v]_{\alpha}) = 0, \qquad (2.14)$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.

We have $2u\alpha v \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$. Replacing u by $2u\beta v$ in $u\alpha v + v\alpha u \in U$ and $u\alpha v - v\alpha u \in U$ and adding the results and then using (*), we find that $4v\alpha u\beta v \in U$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$. Replacing $4v\alpha u\beta v$ for v in Lemma 3(a) and since M is 2-torsoin free, we have

$$d(u\alpha(v\alpha u\beta v) + (v\alpha u\beta v)\alpha u) = 2(u\alpha d(v\alpha u\beta v) + v\alpha u\beta v\alpha d(u)).$$
(2.15)

Using (2.15) in (2.14) and then (*), we have

$$0 = d(u\alpha(v\alpha u\beta v) + (v\alpha u\beta v)\alpha u) - d(u\alpha(v\alpha v)\beta u) - d(v\alpha(u\alpha u)\beta v) = 2(u\alpha d(v\alpha u\beta v) + v\alpha u\beta v\alpha d(u)) - u\alpha u\beta d(v\alpha v) - 3u\alpha v\alpha v\beta d(u) + v\alpha v\alpha u\beta d(u) - v\alpha v\beta d(u\alpha u) - 3v\alpha u\alpha u\beta d(v) + u\alpha u\alpha v\beta d(v) = -3(u\alpha u\alpha v - 2u\alpha v\alpha u + v\alpha u\alpha u)\beta d(v) - (u\alpha v\alpha v - 2v\alpha u\alpha v + v\alpha v\alpha u)\beta d(u)$$

and hence

3(ulpha u lpha v - 2u lpha v lpha u + v lpha u lpha u) eta d(v) +	(2.16)
$(u\alpha v\alpha v - 2v\alpha u\alpha v + v\alpha v\alpha u)\beta d(u) = 0,$	

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.

Replacing u by u + v in Lemma3(d), we get

$$(u\alpha u\alpha v - 2u\alpha v\alpha u + v\alpha u\alpha u)\beta d(v) -$$
(2.17)
$$(u\alpha v\alpha v - 2v\alpha u\alpha v + v\alpha v\alpha u)\beta d(u) = 0,$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$. Combining (2.16) and (2.17), we obtain

$$(u\alpha u\alpha v - 2u\alpha v\alpha u + v\alpha u\alpha u)\beta d(v) = 0.$$
(2.18)

By (2.17) and (2.18), we arrive at (b).

3. MAIN RESULT

The main result of this paper states as follows.

Theorem 5. Let M be a 2-torsion free prime Γ -ring satisfying (*) and U a Lie ideal of M such that $u\alpha u \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$. If $d : M \to M$ is an additive mapping such that $d(u\alpha u) = 2u\alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then $d(u\alpha v) = u\alpha d(v) + v\alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$.

Proof. Suppose U is a commutative Lie ideal of M. Let $a \in U$ and $x \in M$. Then $[a, x]_{\alpha} \in U$ and so commutes with a .Now, for $x, y \in M$, we have $a\beta[a, x\alpha y]_{\alpha} = [a, x\alpha y]_{\alpha}\beta a$, for all $\alpha, \beta \in \Gamma$. Expanding $[a, x\alpha y]_{\alpha}$ as $[a, x]_{\alpha}\alpha y + x\alpha[a, y]_{\alpha}$ and using that a commutes with this, with $[a, x]_{\alpha}$ and with $[a, y]_{\alpha}$, we have $2[a, x]_{\alpha}\alpha[a, y]_{\alpha} = 0$ and so $[a, x]_{\alpha}\alpha[a, y]_{\alpha} = 0$, since M is 2-torsion free. Replacing y by $a\beta x$ in $[a, x]_{\alpha}\alpha[a, y]_{\alpha} = 0$ and then using (*), we have $[a, x]_{\alpha}\alpha M\beta[a, x]_{\alpha} = 0$, for all $x \in M$ and $\alpha, \beta \in \Gamma$. Since M is prime, $[a, x]_{\alpha} = 0$ and so $U \subset Z(M)$. Hence by Lemma 3(a), we have $2d(u\alpha v) = 2(u\alpha d(v) + v\alpha d(u))$. Since M is 2-torsion free, $d(u\alpha v) = u\alpha d(v) + v\alpha d(u)$. We assume that U is a noncommutative Lie ideal of M.

Now, replacing u by $[u_1, w]_{\alpha}$ in Lemma 3(d), we get

$$([u_1, w]_{\alpha} \alpha [u_1, w]_{\alpha} \alpha v - 2[u_1, w]_{\alpha} \alpha v \alpha [u_1, w]_{\alpha} + v \alpha [u_1, w]_{\alpha} \alpha [u_1, w]_{\alpha}) \beta d([u_1, w]_{\alpha}) = 0,$$
(3.1)

for all $u, v, u_1, w \in U$ and $\alpha, \beta \in \Gamma$. Using Lemma 4(a) in (3.1), we get $[u_1, w]_{\alpha} \alpha[u_1, w]_{\alpha} \alpha v \beta d([u_1, w]_{\alpha}) = 0$ and so $[u_1, w]_{\alpha} \alpha[u_1, w]_{\alpha} \alpha U \beta d([u_1, w]_{\alpha}) = 0$. Hence by Lemma 2, either $[u_1, w]_{\alpha} \alpha[u_1, w]_{\alpha} = 0$ or $d([u_1, w]_{\alpha}) = 0$. If $d([u_1, w]_{\alpha}) = 0$ i.e, $d(u_1 \alpha w) = d(w \alpha u_1)$, for all $u_1, w \in U$ and $\alpha \in \Gamma$, then by Lemma 3(a) and the fact that M is 2-torsion free, we get $d(u_1 \alpha w) = u_1 \alpha d(w) + w \alpha d(u_1)$. On the other hand let $[u_1, w]_{\alpha} \alpha[u_1, w]_{\alpha} = 0$, for some $u_1, w \in U$ and $\alpha \in \Gamma$. Replacing v by $[u_1, w]_{\alpha}$ in Lemma 4(b), we get

$$(u\alpha u\alpha[u_1,w]_{\alpha})\beta d([u_1,w]_{\alpha})$$

$$-2(u\alpha[u_1,w]_{\alpha}\alpha u)\beta d([u_1,w]_{\alpha}) + ([u_1,w]_{\alpha}\alpha u\alpha u)\beta d([u_1,w]_{\alpha}) = 0.$$

$$(3.2)$$

Applying Lemma 4(a) in (3.2), we have

$$([u_1, w]_{\alpha} \alpha u \alpha u) \beta d([u_1, w]_{\alpha}) - 2(u \alpha [u_1, w]_{\alpha} \alpha u) \beta d([u_1, w]_{\alpha}) = 0,$$

$$(3.3)$$

for all $u \in U$ and $\alpha, \beta \in \Gamma$.

Linearizing (3.3) on u and using Lemma 4(b), we have

$$([u_1, w]_{\alpha} \alpha u \alpha v) \beta d([u_1, w]_{\alpha}) + ([u_1, w]_{\alpha} \alpha v \alpha u) \beta d([u_1, w]_{\alpha})$$

$$-2((u\alpha [u_1, w]_{\alpha} \alpha v) + (v\alpha [u_1, w]_{\alpha} \alpha u)) \beta d([u_1, w]_{\alpha}) = 0,$$

$$(3.4)$$

for all $u, v, w \in U$ and $\alpha, \beta \in \Gamma$.

Replacing u by $2u\beta v_1$ in (3.4) and then using the fact the M is 2-torsion free and (*), we have

$$[u_1, w]_{\alpha} \alpha u \beta v_1 \alpha v \beta d([u_1, w]_{\alpha}) + [u_1, w]_{\alpha} \alpha v \beta u \alpha v_1 \beta d([u_1, w]_{\alpha})$$

$$-2(u \alpha v_1 \beta [u_1, w]_{\alpha} \alpha v + v \alpha [u_1, w]_{\alpha} \alpha u \beta v_1) \beta d([u_1, w]_{\alpha}) = 0.$$
(3.5)

Further, replacing v_1 by $[u_1, w]_{\alpha}$ in (3.5) and then using Lemma 4(b), $[u_1, w]_{\alpha} \alpha [u_1, w]_{\alpha} = 0$ and (*),

we get $[u_1, w]_{\alpha} \alpha u \beta [u_1, w]_{\alpha} \alpha v \beta d([u_1, w]_{\alpha}) = 0$

i.e., $([u_1, w]_{\alpha} \alpha u \beta [u_1, w]_{\alpha}) \alpha U \beta d([u_1, w]_{\alpha}) = 0$, for all $u \in U$ and

 $\alpha, \beta \in \Gamma$. By Lemma 2, either $d([u_1, w]_{\alpha}) = 0$ or $[u_1, w]_{\alpha} \alpha u \beta [u_1, w]_{\alpha} = 0$.

If $d([u_1, w]_{\alpha}) = 0$, then by the same argument as above we get the required result. On the other hand, if $[u_1, w]_{\alpha} \alpha u \beta [u_1, w]_{\alpha} = 0$, for all $u \in U$ and $\alpha, \beta \in \Gamma$, then by Lemma 2, we have $[u_1, w]_{\alpha} = 0$. Further, by Lemma 3(a) and the fact that M is 2-torsion free, we have $d(u_1 \alpha w) = u_1 \alpha d(w) + w \alpha d(u_1)$. Hence in both cases, we find that $d(u \alpha v) = u \alpha d(v) + v \alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$. The proof is thus complete. \Box

Corollary 6. Let M be a 2-torsion free prime Γ -rins and $d : M \to M$ a Jordan left derivation. Then d is a left derivation on M.

Proof. If M is commutative, then $u\alpha v = v\alpha u$, for all $u, v \in M$ and $\alpha \in \Gamma$, and so by Lemma 3(a), we have $d(u\alpha v) = u\alpha d(v) + v\alpha d(u)$, for all $u, v \in M$ and $\alpha \in \Gamma$. If M is noncommutative, then by Theorem 5, we have $d(u\alpha v) = u\alpha d(v) + v\alpha d(u)$, for all $u, v \in M$ and $\alpha \in \Gamma$.

Acknowledgement. The authors are grateful to the referees for their valuable instructions.

REFERENCES

- [1] Mohammad Ashraf and Nadeem-Ur-Rehman, On Lie ideals and Jordan left derivations of prime rings, Arch.Math.(Brno), **36**(2000), 201-206.
- [2] M.Bresar and J.Vukman, Jordan derivations on prime rings, Bull.Austral.Math.Soc., 37(1988), 321-322.
- [3] Y.Ceven, Jordan left derivations on completely prime gamma rings, C.U.Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi (2002)Cilt 23 Sayi2.
- [4] Qing Deng, On Jordan left derivations, Math.J.Okayama Univ., 34(1992), 145-147.
- [5] I.N.Herstein, *Topics in ring theory*, Univ. of Chicago Press, Chicago (1969).
- [6] Mustafa Asci and Sahin Ceran, The commutativity in prime gamma rings with left derivation, International Mathematical Forum, 2(3)(2007), 103-108.
- [7] M.Sapanci and A.Nakajima, Jordan derivations on completely prime gamma rings, Math. Japonica, **46**(1)(1997), 47-51.