Punjab University

Journal of Mathematics (ISSN 1016-2526)
Vol. 44(2012) pp. 23-29

Jordan Left Derivations on Lie Ideals of Prime Γ-rings

A. K. Halder
University of Rajshahi
Department of Mathematics
Rajshahi-6205
Rajshahi, Bangladesh
Email: halderamitabh@yahoo.com
A. C. Paul
University of Rajshahi
Department of Mathematics
Rajshahi-6205
Rajshahi, Bangladesh
Email: acpaulru_math@yahoo.com

Abstract

Let M be a 2-torsion free prime Γ-ring. Let U be a Lie ideal of M such that $u \alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$. If $d: M \rightarrow M$ is an additive mapping such that $d(u \alpha u)=2 u \alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then $d(u \alpha v)=u \alpha d(v)+v \alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$.

AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15
Key Words: n-torsion free, Lie ideals, Jordan left derivations, Prime Γ-rings.

1. Introduction

Let M and Γ be additive abelian groups. M is said to be a Γ-ring if there exists a mapping $M \times \Gamma \times M \rightarrow M$ (sending (x, α, y) into $x \alpha y$) such that
(a) $(x+y) \alpha z=x \alpha z+y \alpha z$,
$x(\alpha+\beta) y=x \alpha y+x \beta y$,
$x \alpha(y+z)=x \alpha y+x \alpha z$,
(b) $(x \alpha y) \beta z=x \alpha(y \beta z)$,
for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.
A subset A of a Γ-ring M is a left(right) ideal of M if A is an additive subgroup of M and $M \Gamma A=\{m \alpha a: m \in M, \alpha \in \Gamma, a \in A\}, A \Gamma M$ is contained in A. The centre of M is doneted by $\mathbf{Z}(\mathbf{M})$ which is define by $Z(M)=\{m \in M: a \alpha m=m \alpha a, a \in$ $M, \alpha \in \Gamma\} . M$ is commutative if $a \alpha b=b \alpha a$, for all $a, b \in M$ and $\alpha \in \Gamma . M$ is prime if $a \Gamma М \Gamma b=0$ with $a, b \in M$, then $a=0$ or $b=0$. We denote the commutator $x \alpha y-y \alpha x$ by $[x, y]_{\alpha}$. An additive subgroup U of M is said to be a Lie ideal of M if $[u, x]_{\alpha} \in U$, for all $u \in U, x \in M$ and $\alpha \in \Gamma . M$ is n-torsion free if $n x=0$, for $x \in M$ implies $x=0$, where n is an integer. An additive mapping $d: M \rightarrow M$ is a derivation if $d(a \alpha b)=$ $a \alpha d(b)+d(a) \alpha b$, a left derivation if $d(a \alpha b)=a \alpha d(b)+b \alpha d(a)$, a Jordan derivation if $d(a \alpha a)=a \alpha d(a)+d(a) \alpha a$ and a Jordan left derivation if $d(a \alpha a)=2 a \alpha d(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$.
Y.Ceven [3] worked on Jordan left derivations on completely prime Γ-rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ-ring that makes the Γ-ring commutative with an assumption. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ-ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation for Γ-rings.
Mustafa Asci and Sahin Ceran [6] studied on a nonzero left derivation d on a prime Γ-ring M for which M is commutative with the conditions $d(U) \subseteq U$ and $d^{2}(U) \subseteq Z$, where U is an ideal of M and Z is the centre of M. They also proved the commutativity of M by the nonzero left derivation d_{1} and right derivation d_{2} on M with the conditions $d_{2}(U) \subseteq U$ and $d_{1} d_{2}(U) \subseteq Z$.
In [7], M.Sapanci and A.Nakajima defined a derivation and a Jordan derivation on Γ-rings and investigated a Jordan derivation on a certain type of completely prime Γ-ring which is a derivation. They also gave examples of a derivation and a Jordan derivation of Γ-rings.
M. Bresar and J.Vukman[2] showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative, where R is a ring and X is 2 -torsion free and 3-torsion free left R-module.In [8], Jun and Kim proved their results without the property 3-torsion free.
Qing Deng [4] worked on Jordan left derivations d of prime ring R of characteristic not 2 into a nonzero faithful and prime left R-module X. He proved the commutativity of R with Jordan left derivation d.
Mohammad Ashraf and Nadeem-Ur-Rehman[1] studied on Lie ideals and Jordan left derivations of prime rings. They proved that if d is an additive mapping on a 2 -torsion free prime ring R satisfying $d\left(u^{2}\right)=2 u d(u)$, for all $u \in U$, where U is a Lie ideal of R such that $u^{2} \in U$, for all $u \in U$, then $d(u v)=u d(v)+v d(u)$, for all $u \in U$.
In our paper, we reviewed the results of Mohammad Ashraf and Nadeem-Ur-Rehman[1] in gamma rings. We show that if d is an additive mapping on a 2 -torsion free prime Γ-ring M such that $d(u \alpha u)=2 u \alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, where U is a Lie ideal of M such that $u \alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$, then $d(u \alpha v)=u \alpha d(v)+v \alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$. To complete the proof of main result in commutative sense, we take a help from the book 'Topics in ring theory' of Herstein[5]. Finally, we showed that every Jordan left derivation on U is a left derivation.
Throughout this paper, we shall use the mark (*) for $a \alpha b \beta c=a \beta b \alpha c$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.
In order to prove our main result, we shall state and prove some lemmas as primary results.

2. Primary Results

Lemma 1. Let $U \nsubseteq Z(M)$ be a Lie ideal of a 2-torsion free σ-prime Γ-ring M. Then there exists an ideal I of M such that $[I, M]_{\alpha} \subseteq U$ but $[I, M]_{\alpha} \nsubseteq Z(M)$.

Proof. Since M is 2-torsion free and $U \nsubseteq Z(M)$, it follows from the results in [6] that $[U, U]_{\alpha} \neq 0$ and $[I, M]_{\alpha} \subseteq U$,where $I=I \alpha[U, U]_{\alpha} \alpha M \neq 0$ is an ideal of M generated by $[U, U]_{\alpha}$. Now, $U \nsubseteq Z(M)$ implies $[I, M]_{\alpha} \nsubseteq Z(M)$;for, if $[I, M]_{\alpha} \subseteq Z(M)$ then $\left[I,[I, M]_{\alpha}\right]_{\alpha}=0$, which gives $I \subseteq Z(M)$ and, since $I \neq 0$ is an ideal of M, so $M=$ $Z(M)$.

Lemma 2. Let $U \nsubseteq Z(M)$ be a Lie ideal of a 2-torsion free prime Γ-ring M which satisfies the condition $\left(^{*}\right)$ and $a, b \in M$ such that $a \alpha U \beta b=0$. Then $a=0$ or $b=0$.

Proof. Since M is 2-torsion free prime Γ-ring, there exists an ideal I of M such that $[I, M]_{\alpha} \subseteq U$ but $[I, M]_{\alpha} \nsubseteq Z(M)$, by Lemma 1 . Now, taking $u \in U, e \in I$ and $m \in M$, we have $[e \alpha a \alpha u, m]_{\alpha} \in[I, M]_{\alpha} \subseteq U$, and so
$0=a \alpha[e \alpha a \alpha u, m]_{\beta} \beta b$
$=a \alpha[e \alpha a, m]_{\alpha} \beta u \beta b+a \alpha e \beta a \alpha[u, m]_{\alpha} \beta b$, by (*)
$=a \alpha[e \alpha a, m]_{\alpha} \beta u \beta b$, since $a \alpha[u, m]_{\alpha} \in a \alpha U \beta b$
$=a \alpha e \alpha a \alpha т \beta u \beta b-a \alpha т \alpha е \alpha a \beta u \beta b$
$=a \alpha e \alpha a \alpha m \beta u \beta b-a \alpha m \alpha e \beta a \alpha u \beta b$, by $\left(^{*}\right)$
$=a \alpha e \alpha a \alpha m \beta u \beta b$, by assumption.
Thus $a \alpha I \alpha a \alpha M \beta U \beta b=0$.
If $a \neq 0$ then $U \beta b=0$, by the primeness of M. Now, if $u \in U$ and $m \in M$ then $u \alpha m-m \alpha u \in U$ and hence $(u \alpha m-m \alpha u) \beta b=0$ implies $u \alpha m \beta b=0$, that is $u \alpha M \beta b=$ 0 . Since $U \neq 0$, we must have $b=0$. In the similar fashion, it can be shown that if $b \neq 0$ then $a=0$.

Lemma 3. Let M be a 2-torsion free prime Γ-ring and let U be a Lie ideal of M such that $u \alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$. If $d: M \rightarrow M$ is an additive mapping satisfying $d(u \alpha u)=2 u \alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then
(a) $d(u \alpha v+v \alpha u)=2 u \alpha d(v)+2 v \alpha d(u)$. Let M satisfy (*), then
(b) $d(u \alpha v \beta u)=u \alpha u \beta d(v)+3 u \alpha v \beta d(u)-v \alpha u \beta d(u)$,
(c) $d(u \alpha v \beta w+w \alpha v \beta u)=(u \alpha w+w \alpha u) \beta d(v)+3 u \alpha v \beta d(w)+3 w \alpha v \beta d(u)$
$-v \alpha u \beta d(w)-v \alpha w \beta d(u)$,
(d) $[u, v]_{\alpha} \alpha u \beta d(u)=u \alpha[u, v]_{\alpha} \beta d(u)$
(e) $[u, v]_{\alpha} \beta(d(u \alpha v)-u \alpha d(v)-v \alpha d(u))=0$,
for all $u, v, w \in U$ and $\alpha, \beta \in \Gamma$.

Proof. Since $u \alpha v+v \alpha u=(u+v) \alpha(u+v)-u \alpha u-v \alpha v$, we have $u \alpha v+v \alpha u \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$. Then $d(u \alpha v+v \alpha u)=d((u+v) \alpha(u+v))-d(u \alpha u)-d(v \alpha v)$ with our hypothesis yields the required result.
Replacing v by $u \beta v+v \beta u$ in (a), we have

$$
\begin{gather*}
d(u \alpha(u \beta v+v \beta u)+(u \beta v+v \beta u) \alpha u)= \tag{2.1}\\
2 u \alpha d(u \beta v+v \beta u)+2(u \beta v+v \beta u) \alpha d(u) .
\end{gather*}
$$

Since $u \alpha v+v \alpha u \in U$, by $\left({ }^{*}\right)$ we get

$$
\begin{gather*}
d(u \alpha(u \beta v+v \beta u)+(u \beta v+v \beta u) \alpha u)= \tag{2.2}\\
4 u \alpha u \beta d(v)+6 u \alpha v \beta d(u)+2 v \alpha u \beta d(u) .
\end{gather*}
$$

On the other hand

$$
\begin{array}{r}
d(u \alpha(u \beta v+v \beta u)+(u \beta v+v \beta u) \alpha u)= \tag{2.3}\\
d(u \alpha u \beta v+v \beta u \alpha u)+2 d(u \alpha v \beta u)= \\
2 u \alpha u \beta d(v)+4 v \alpha u \beta d(u)+2 d(u \alpha v \beta u) .
\end{array}
$$

Combining (2.2) and (2.3) and using the condition that M is 2-torsion free, we obtain (b).

Replacing $u+w$ for u in (b) and using (*), we get

$$
\begin{array}{r}
d((u+w) \alpha v \beta(u+w))= \tag{2.4}\\
u \alpha u \beta d(v)+w \alpha w \beta d(v)+(u \alpha w+w \alpha u) \beta d(v)+ \\
3 u \alpha v \beta d(u)+3 u \alpha v \beta d(w)+3 w \alpha v \beta d(u)+w \alpha v \beta d(w)- \\
v \alpha u \beta d(u)-v \alpha u \beta d(w)-v \alpha w \beta d(u)-v \alpha w \beta d(w) .
\end{array}
$$

On the other hand with $\left({ }^{*}\right)$, we have

$$
\begin{array}{r}
d((u+w) \alpha v \beta(u+w))= \tag{2.5}\\
d(u \alpha v \beta u)+d(w \alpha v \beta w)+d(u \alpha v \beta w+w \alpha v \beta u)= \\
u \alpha u \beta d(v)+3 u \alpha v \beta d(u)-v \alpha u \beta d(u)+w \alpha w \beta d(v) \\
+3 w \alpha v \beta d(w)-v \alpha w \beta d(w)+d(u \alpha v \beta w+w \alpha v \beta u) .
\end{array}
$$

Combining (2.4) and (2.5), we obtain (c).
Since $u \alpha v+v \alpha u$ and $u \alpha v-v \alpha u$ are in U, we see that $2 u \alpha v \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$. By hypothesis, we have $d((u \alpha v) \beta(u \alpha v))=2 u \alpha v \beta d(u \alpha v)$.
Replacing w by $2 u \beta v$ in (c) with $\left({ }^{*}\right)$ and the condition that M is 2-torsion free, we get

$$
\begin{array}{r}
d(u \alpha v \beta(u \beta v)+(u \beta v) \alpha v \beta u)= \tag{2.6}\\
(u \alpha u \beta v+u \alpha v \beta u) \beta d(v)+3 u \alpha v \beta d(u \beta v)+ \\
3 u \alpha v \beta v \beta d(u)-v \alpha u \beta d(u \beta v)-v \alpha u \beta v \beta d(u) .
\end{array}
$$

On the other hand with $\left({ }^{*}\right)$, we have

$$
\begin{array}{r}
d(u \alpha v \beta(u \beta v)+(u \beta v) \alpha v \beta u)= \tag{2.7}\\
d((u \beta v) \alpha(u \beta v)+u \alpha v \beta v \beta u)= \\
2 u \alpha v \beta d(u \beta v)+2 u \alpha u \beta v \beta d(v)+ \\
3 u \alpha v \beta v \beta d(u)-v \alpha v \beta u \beta d(u) .
\end{array}
$$

Combining (2.6) and (2.7), we have

$$
\begin{array}{r}
{[u, v]_{\alpha} \beta d(u \beta v)=} \tag{2.8}\\
u \alpha[u, v]_{\beta} \beta d(v)+v \alpha[u, v]_{\beta} \beta d(u) .
\end{array}
$$

Replacing $u+v$ for v in (2.8), we have

$$
\begin{array}{r}
2[u, v]_{\alpha} \beta u \beta d(u)+[u, v]_{\alpha} \beta d(u \beta v)= \tag{2.9}\\
2 u \alpha[u, v]_{\beta} \beta d(u)+u \alpha[u, v]_{\beta} \beta d(v)+v \alpha[u, v]_{\beta} \beta d(u) .
\end{array}
$$

From (2.8) and (2.9), we get (d).
Linearizing (d) on u, we have

$$
\begin{array}{r}
{[u, v]_{\alpha} \beta u \beta d(u)+[u, v]_{\alpha} \beta v \beta d(v)+[u, v]_{\alpha} \beta u \beta d(v)+[u, v]_{\alpha} \beta v \beta d(u)=} \tag{2.10}\\
\alpha[u, v]_{\beta} \beta d(u)+u \alpha[u, v]_{\beta} \beta d(v)+v \alpha[u, v]_{\beta} \beta d(u)+v \alpha[u, v]_{\beta} \beta d(v),
\end{array}
$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.
Application of (d) and (8) gives $[u, v]_{\alpha} \beta u \beta d(v)+[u, v]_{\alpha} \beta v \beta d(u)=[u, v]_{\alpha} \beta d(u \beta v)$ and hence $[u, v]_{\alpha} \beta(d(u \alpha v)-u \alpha d(v)-v \alpha d(u))=0$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.

Lemma 4. Let M be a 2-torsion free Γ-ring satisfying (*) and U a Lie ideal of M such that $u \alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$. If $d: M \rightarrow M$ is an additive mapping satisfying $d(u \alpha u)=2 u \alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then
(a) $[u, v]_{\alpha} \beta d\left([u, v]_{\alpha}\right)=0$,
(b) $(u \alpha u \alpha v-2 u \alpha v \alpha u+v \alpha u \alpha u) \beta d(v)=0$,
for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.

Proof. By Lemma 3(a) and Lemma 3(e), we get

$$
\begin{equation*}
d(u \alpha v+v \alpha u)=2(u \alpha d(v)+v \alpha d(u)) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
[u, v]_{\alpha} \beta(d(u \alpha v)-u \alpha d(v)-v \alpha d(u))=0 . \tag{2.12}
\end{equation*}
$$

Combining (2.11) and (2.12), we have

$$
\begin{equation*}
[u, v]_{\alpha} \beta(d(v \alpha u)-u \alpha d(v)-v \alpha d(u))=0 . \tag{2.13}
\end{equation*}
$$

Using (2.12) - (2.13), we get $[u, v]_{\alpha} \beta d\left([u, v]_{\alpha}\right)=0$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.
For any $u, v \in U$ and $\alpha, \beta \in \Gamma$, we have $d\left([u, v]_{\alpha} \beta[u, v]_{\alpha}\right)=2[u, v]_{\alpha} \beta d\left([u, v]_{\alpha}\right)$. By (a), we have

$$
\begin{equation*}
d\left([u, v]_{\alpha} \beta[u, v]_{\alpha}\right)=0, \tag{2.14}
\end{equation*}
$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.
We have $2 u \alpha v \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$.
Replacing u by $2 u \beta v$ in $u \alpha v+v \alpha u \in U$ and $u \alpha v-v \alpha u \in U$ and adding the results and then using $\left(^{*}\right)$, we find that $4 v \alpha u \beta v \in U$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.
Replacing $4 v \alpha u \beta v$ for v in Lemma 3(a) and since M is 2-torsoin free, we have

$$
\begin{equation*}
d(u \alpha(v \alpha u \beta v)+(v \alpha u \beta v) \alpha u)=2(u \alpha d(v \alpha u \beta v)+v \alpha u \beta v \alpha d(u)) . \tag{2.15}
\end{equation*}
$$

Using (2.15) in (2.14) and then $(*)$, we have

$$
\begin{array}{r}
0= \\
d(u \alpha(v \alpha u \beta v)+(v \alpha u \beta v) \alpha u)-d(u \alpha(v \alpha v) \beta u)-d(v \alpha(u \alpha u) \beta v)= \\
2(u \alpha d(v \alpha u \beta v)+v \alpha u \beta v \alpha d(u))-u \alpha u \beta d(v \alpha v) \\
-3 u \alpha v \alpha v \beta d(u)+v \alpha v \alpha u \beta d(u)-v \alpha v \beta d(u \alpha u) \\
-3 v \alpha u \alpha u \beta d(v)+u \alpha u \alpha v \beta d(v)= \\
-3(u \alpha u \alpha v-2 u \alpha v \alpha u+v \alpha u \alpha u) \beta d(v) \\
-(u \alpha v \alpha v-2 v \alpha u \alpha v+v \alpha v \alpha u) \beta d(u)
\end{array}
$$

and hence

$$
\begin{gather*}
3(u \alpha u \alpha v-2 u \alpha v \alpha u+v \alpha u \alpha u) \beta d(v)+ \tag{2.16}\\
(u \alpha v \alpha v-2 v \alpha u \alpha v+v \alpha v \alpha u) \beta d(u)=0,
\end{gather*}
$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.
Replacing u by $u+v$ in Lemma3(d), we get

$$
\begin{gather*}
(u \alpha u \alpha v-2 u \alpha v \alpha u+v \alpha u \alpha u) \beta d(v)- \tag{2.17}\\
(u \alpha v \alpha v-2 v \alpha u \alpha v+v \alpha v \alpha u) \beta d(u)=0,
\end{gather*}
$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.
Combining (2.16) and (2.17), we obtain

$$
\begin{equation*}
(u \alpha u \alpha v-2 u \alpha v \alpha u+v \alpha u \alpha u) \beta d(v)=0 . \tag{2.18}
\end{equation*}
$$

By (2.17) and (2.18), we arrive at (b).

3. Main Result

The main result of this paper states as follows.
Theorem 5. Let M be a 2 -torsion free prime Γ-ring satisfying (${ }^{*}$) and U a Lie ideal of M such that $u \alpha u \in U$, for all $u, v \in U$ and $\alpha \in \Gamma$. If $d: M \rightarrow M$ is an additive mapping such that $d(u \alpha u)=2 u \alpha d(u)$, for all $u \in U$ and $\alpha \in \Gamma$, then $d(u \alpha v)=u \alpha d(v)+v \alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$.

Proof. Suppose U is a commutative Lie ideal of M. Let $a \in U$ and $x \in M$. Then $[a, x]_{\alpha} \in$ U and so commutes with a.Now, for $x, y \in M$, we have $a \beta[a, x \alpha y]_{\alpha}=[a, x \alpha y]_{\alpha} \beta a$, for all $\alpha, \beta \in \Gamma$. Expanding $[a, x \alpha y]_{\alpha}$ as $[a, x]_{\alpha} \alpha y+x \alpha[a, y]_{\alpha}$ and using that a commutes with this, with $[a, x]_{\alpha}$ and with $[a, y]_{\alpha}$, we have $2[a, x]_{\alpha} \alpha[a, y]_{\alpha}=0$ and so $[a, x]_{\alpha} \alpha[a, y]_{\alpha}=$ 0 , since M is 2-torsion free. Replacing y by $a \beta x$ in $[a, x]_{\alpha} \alpha[a, y]_{\alpha}=0$ and then using $\left(^{*}\right)$, we have $[a, x]_{\alpha} \alpha M \beta[a, x]_{\alpha}=0$, for all $x \in M$ and $\alpha, \beta \in \Gamma$. Since M is prime, $[a, x]_{\alpha}=$ 0 and so $U \subset Z(M)$. Hence by Lemma 3(a), we have $2 d(u \alpha v)=2(u \alpha d(v)+v \alpha d(u))$.
Since M is 2-torsion free, $d(u \alpha v)=u \alpha d(v)+v \alpha d(u)$.
We assume that U is a noncommutative Lie ideal of M.
Now, replacing u by $\left[u_{1}, w\right]_{\alpha}$ in Lemma 3(d), we get

$$
\begin{align*}
& \left(\left[u_{1}, w\right]_{\alpha} \alpha\left[u_{1}, w\right]_{\alpha} \alpha v-2\left[u_{1}, w\right]_{\alpha} \alpha v \alpha\left[u_{1}, w\right]_{\alpha}\right. \tag{3.1}\\
& \left.\quad+v \alpha\left[u_{1}, w\right]_{\alpha} \alpha\left[u_{1}, w\right]_{\alpha}\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0
\end{align*}
$$

for all $u, v, u_{1}, w \in U$ and $\alpha, \beta \in \Gamma$.
Using Lemma 4(a) in (3.1), we get $\left[u_{1}, w\right]_{\alpha} \alpha\left[u_{1}, w\right]_{\alpha} \alpha v \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$
and so $\left[u_{1}, w\right]_{\alpha} \alpha\left[u_{1}, w\right]_{\alpha} \alpha U \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$.
Hence by Lemma 2, either $\left[u_{1}, w\right]_{\alpha} \alpha\left[u_{1}, w\right]_{\alpha}=0$ or $d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$.
If $d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$ i.e, $d\left(u_{1} \alpha w\right)=d\left(w \alpha u_{1}\right)$, for all $u_{1}, w \in U$ and $\alpha \in \Gamma$, then by
Lemma 3(a) and the fact that M is 2-torsion free, we get $d\left(u_{1} \alpha w\right)=u_{1} \alpha d(w)+w \alpha d\left(u_{1}\right)$. On the other hand let $\left[u_{1}, w\right]_{\alpha} \alpha\left[u_{1}, w\right]_{\alpha}=0$, for some $u_{1}, w \in U$ and $\alpha \in \Gamma$.
Replacing v by $\left[u_{1}, w\right]_{\alpha}$ in Lemma 4(b), we get

$$
\begin{array}{r}
\left(u \alpha u \alpha\left[u_{1}, w\right]_{\alpha}\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right) \tag{3.2}\\
-2\left(u \alpha\left[u_{1}, w\right]_{\alpha} \alpha u\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)+\left(\left[u_{1}, w\right]_{\alpha} \alpha u \alpha u\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0 .
\end{array}
$$

Applying Lemma 4(a) in (3.2), we have

$$
\begin{equation*}
\left(\left[u_{1}, w\right]_{\alpha} \alpha u \alpha u\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)-2\left(u \alpha\left[u_{1}, w\right]_{\alpha} \alpha u\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0, \tag{3.3}
\end{equation*}
$$

for all $u \in U$ and $\alpha, \beta \in \Gamma$.
Linearizing (3.3) on u and using Lemma 4(b), we have

$$
\begin{align*}
& \left(\left[u_{1}, w\right]_{\alpha} \alpha u \alpha v\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)+\left(\left[u_{1}, w\right]_{\alpha} \alpha v \alpha u\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right) \tag{3.4}\\
& \quad-2\left(\left(u \alpha\left[u_{1}, w\right]_{\alpha} \alpha v\right)+\left(v \alpha\left[u_{1}, w\right]_{\alpha} \alpha u\right)\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0,
\end{align*}
$$

for all $u, v, w \in U$ and $\alpha, \beta \in \Gamma$.
Replacing u by $2 u \beta v_{1}$ in (3.4)and then using the fact the M is 2 -torsion free and (*), we have

$$
\begin{align*}
& {\left[u_{1}, w\right]_{\alpha} \alpha u \beta v_{1} \alpha v \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)+\left[u_{1}, w\right]_{\alpha} \alpha v \beta u \alpha v_{1} \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)} \tag{3.5}\\
& \quad-2\left(u \alpha v_{1} \beta\left[u_{1}, w\right]_{\alpha} \alpha v+v \alpha\left[u_{1}, w\right]_{\alpha} \alpha u \beta v_{1}\right) \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0 .
\end{align*}
$$

Further, replacing v_{1} by $\left[u_{1}, w\right]_{\alpha}$ in (3.5) and then using Lemma 4(b), $\left[u_{1}, w\right]_{\alpha} \alpha\left[u_{1}, w\right]_{\alpha}=$ 0 and (*),
we get $\left[u_{1}, w\right]_{\alpha} \alpha u \beta\left[u_{1}, w\right]_{\alpha} \alpha v \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$
i.e., $\left(\left[u_{1}, w\right]_{\alpha} \alpha u \beta\left[u_{1}, w\right]_{\alpha}\right) \alpha U \beta d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$, for all $u \in U$ and
$\alpha, \beta \in \Gamma$. By Lemma 2, either $d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$ or $\left[u_{1}, w\right]_{\alpha} \alpha u \beta\left[u_{1}, w\right]_{\alpha}=0$.
If $d\left(\left[u_{1}, w\right]_{\alpha}\right)=0$, then by the same argument as above we get the required result. On the other hand, if $\left[u_{1}, w\right]_{\alpha} \alpha u \beta\left[u_{1}, w\right]_{\alpha}=0$, for all $u \in U$ and $\alpha, \beta \in \Gamma$, then by Lemma 2, we have $\left[u_{1}, w\right]_{\alpha}=0$. Further, by Lemma 3(a) and the fact that M is 2-torsion free, we have $d\left(u_{1} \alpha w\right)=u_{1} \alpha d(w)+w \alpha d\left(u_{1}\right)$. Hence in both cases, we find that $d(u \alpha v)=$ $u \alpha d(v)+v \alpha d(u)$, for all $u, v \in U$ and $\alpha \in \Gamma$. The proof is thus complete.

Corollary 6. Let M be a 2 -torsion free prime Γ-rins and $d: M \rightarrow M$ a Jordan left derivation. Then d is a left derivation on M.

Proof. If M is commutative, then $u \alpha v=v \alpha u$, for all $u, v \in M$ and $\alpha \in \Gamma$, and so by Lemma 3(a), we have $d(u \alpha v)=u \alpha d(v)+v \alpha d(u)$, for all $u, v \in M$ and $\alpha \in \Gamma$. If M is noncommutative, then by Theorem 5, we have $d(u \alpha v)=u \alpha d(v)+v \alpha d(u)$, for all $u, v \in M$ and $\alpha \in \Gamma$.

Acknowledgement. The authors are grateful to the referees for their valuable instructions.

References

[1] Mohammad Ashraf and Nadeem-Ur-Rehman, On Lie ideals and Jordan left derivations of prime rings,Arch.Math.(Brno),36(2000),201-206
[2] M.Bresar and J.Vukman, Jordan derivations on prime rings, Bull.Austral.Math.Soc.,37(1988),321-322.
[3] Y.Ceven,Jordan left derivations on completely prime gamma rings, C.U.Fen-Edebiyat Fakultesi,Fen Bilimleri Dergisi (2002)Cilt 23 Sayi2.
[4] Qing Deng, On Jordan left derivations,Math.J.Okayama Univ.,34(1992),145-147.
[5] I.N.Herstein,Topics in ring theory,Univ. of Chicago Press,Chicago (1969).
[6] Mustafa Asci and Sahin Ceran,The commutativity in prime gamma rings with left derivation,International Mathematical Forum,2(3)(2007),103-108.
[7] M.Sapanci and A.Nakajima,Jordan derivations on completely prime gamma rings,Math.Japonica,46(1)(1997),47-51.

